Initial Audit Task Execution

implementationChallenge

Prompt Content

Simulate an initial audit by providing the agent with a document excerpt and a specific policy area (e.g., 'Data Privacy'). The agent should:
1. Use the `policy_retriever` tool to find relevant policy documents.
2. Analyze the document excerpt in the context of retrieved policies.
3. Identify any potential violations or risks.
4. Use the `mem0_saver` tool to store a summary of its initial findings for future reference.

```python
# ... (previous agent setup code)

thread = client.beta.threads.create()

message = client.beta.threads.messages.create(
    thread_id=thread.id,
    role="user",
    content="Please audit the following document excerpt for Data Privacy policy compliance: 'Our internal analytics system collects IP addresses without notifying users, storing them indefinitely.'"
)

run = client.beta.threads.runs.create(
    thread_id=thread.id,
    assistant_id=assistant.id
)

# Polling mechanism to check run status and handle tool calls
while run.status in ['queued', 'in_progress', 'requires_action']:
    if run.status == 'requires_action':
        print('Agent requires action (tool call)...')
        tool_outputs = []
        for tool_call in run.required_action.submit_tool_outputs.tool_calls:
            if tool_call.function.name == 'policy_retriever':
                args = eval(tool_call.function.arguments)
                output = policy_retriever(args['query'])
                tool_outputs.append({
                    "tool_call_id": tool_call.id,
                    "output": str(output)
                })
            elif tool_call.function.name == 'mem0_saver':
                args = eval(tool_call.function.arguments)
                output = mem0_saver(args['key'], args['value'])
                tool_outputs.append({
                    "tool_call_id": tool_call.id,
                    "output": str(output)
                })
        if tool_outputs:
            run = client.beta.threads.runs.submit_tool_outputs(
                thread_id=thread.id,
                run_id=run.id,
                tool_outputs=tool_outputs
            )
        else:
            # Handle cases where no tool outputs are generated but action is required
            break

    run = client.beta.threads.runs.retrieve(thread_id=thread.id, run_id=run.id)
    # time.sleep(1) # Add a small delay if polling frequently

if run.status == 'completed':
    messages = client.beta.threads.messages.list(thread_id=thread.id)
    for msg in messages.data:
        if msg.role == 'assistant':
            print(f"Agent: {msg.content[0].text.value}")

```

Try this prompt

Open the workspace to execute this prompt with free credits, or use your own API keys for unlimited usage.

Usage Tips

Copy the prompt and paste it into your preferred AI tool (Claude, ChatGPT, Gemini)

Customize placeholder values with your specific requirements and context

For best results, provide clear examples and test different variations