Implement MCP Data Access and TorchServe Tool

implementationChallenge

Prompt Content

Develop the 'DataReader' node to simulate MCP interaction, ensuring that data access is contingent on a valid 'mcp_token'. Create a custom LangChain tool for the 'DataAnalyzer' agent that calls a TorchServe endpoint. Deploy a simple dummy model (e.g., a pre-trained `sklearn` model for anomaly detection wrapped in TorchServe) locally or on a cloud service, and configure your LangGraph agent to use this tool. 

```python
# MCP-aware data reader (simplified)
def mcp_data_reader_node(state: AgentState):
    mcp_token = state.get('data_access_request', {}).get('mcp_token')
    if mcp_token != "valid_token_123": # Simplified validation
        raise ValueError("Invalid MCP token for data access.")
    
    # Simulate fetching data after valid token
    simulated_raw_data = [
        {"source": "iot_sensors_factoryA", "timestamp": "2024-03-01", "water_usage": 120.5, "energy_usage": 1000},
        {"source": "iot_sensors_factoryA", "timestamp": "2024-03-05", "water_usage": 130.0, "energy_usage": 1100}
    ]
    return {"raw_data": simulated_raw_data, "messages": [("tool", "Data fetched via MCP.")]}

# Example of TorchServe Tool (define your model handler and deploy with TorchServe first)
@tool
def analyze_anomalies_torchserve(data_point: float) -> str:
    """Analyzes a data point for anomalies using a model served by TorchServe."""
    # In real scenario, make an HTTP request to your TorchServe endpoint
    # response = requests.post("http://localhost:8080/predictions/anomaly_detector", json={"input": data_point})
    # return response.json()['prediction']
    return "no_anomaly" # Simplified for challenge

# Integrate this tool into your DataAnalyzer agent's capabilities.
# e.g., agent_executor = AgentExecutor(agent=agent, tools=[analyze_anomalies_torchserve])
```

Try this prompt

Open the workspace to execute this prompt with free credits, or use your own API keys for unlimited usage.

Usage Tips

Copy the prompt and paste it into your preferred AI tool (Claude, ChatGPT, Gemini)

Customize placeholder values with your specific requirements and context

For best results, provide clear examples and test different variations