Integrate Gemini 2.5 Flash and LIME

implementationChallenge

Prompt Content

Implement the `UserTopicAnalyzer` agent to call Gemini 2.5 Flash for extracting topics from simulated user data. Subsequently, integrate LIME to explain the `AdStrategist`'s targeting decisions and the `PrivacyAuditor`'s flagging decisions. This might involve creating a wrapper function or a custom tool for the agents to invoke LIME.

```python
# Example of how UserTopicAnalyzer might use Gemini
def analyze_topics(user_data: str) -> str:
    response = autogen.Completion.create(context=user_data, llm_config=llm_config)
    return response.get("choices")[0].get("message").get("content")

# Integrate this function into UserTopicAnalyzer's capabilities or tools

# Consider a custom tool for LIME:
# from autogen.agentchat.contrib.llm_utils import register_for_llm
# from lime.lime_text import LimeTextExplainer

# @register_for_llm(name="explain_decision", description="Generates a LIME explanation for a text-based decision.")
# def explain_decision(text_input: str, model_prediction_function, class_names: list) -> str:
#     explainer = LimeTextExplainer(class_names=class_names)
#     explanation = explainer.explain_instance(text_input, model_prediction_function, num_features=6)
#     return explanation.as_plain_text()
# # ... then make this tool available to the relevant agents
```

Try this prompt

Open the workspace to execute this prompt with free credits, or use your own API keys for unlimited usage.

Usage Tips

Copy the prompt and paste it into your preferred AI tool (Claude, ChatGPT, Gemini)

Customize placeholder values with your specific requirements and context

For best results, provide clear examples and test different variations